Evaluation of the forearm EMG signal features for the control of a prosthetic hand.
نویسندگان
چکیده
The purpose of this research is to select the best features to have a high rate of motion classification for controlling an artificial hand. Here, 19 EMG signal features have been taken into account. Some of the features suggested in this study include combining wavelet transform with other signal processing techniques. An assessment is performed with respect to three points of view: (i) classification of motions, (ii) noise tolerance and (iii) calculation complexity. The energy of wavelet coefficients of EMG signals in nine scales, and the cepstrum coefficients were found to produce the best features in these views.
منابع مشابه
Proof of Concept of an Online EMG-Based Decoding of Hand Postures and Individual Digit Forces for Prosthetic Hand Control
INTRODUCTION Options currently available to individuals with upper limb loss range from prosthetic hands that can perform many movements, but require more cognitive effort to control, to simpler terminal devices with limited functional abilities. We attempted to address this issue by designing a myoelectric control system to modulate prosthetic hand posture and digit force distribution. METHO...
متن کاملAdvanced Signal Processing Techniques Applied to Cross-talk Reduction in Forearm S-emg
In spite of the great advances in the mechanical and electronic components of prosthetic hands, they still lack the high number of degrees of freedom present in the real human hand. That is due, not to technical deficiencies, but to the much reduced amount of independent control signals available when using surface electromyography (s-EMG) from the forearm stump or other artificial sensors. Cro...
متن کاملEMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols
BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...
متن کاملDynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis
Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological measurement
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2003